Gold (Au) Targets

licenses.

• Au 1: Located in Osun State, contains 17 known hydrothermal vein occurrences of Au and over 100 placer deposits, all hosted in Neoproterozoic meta-volcanics and volcano-sedimentary units. All mining activities are artisanal and active. • Au 2: Located in Kebbi State, contains 101 active hard-rock occurrences of Au hosted in Neoproterozoic volcano-sedimentary units and Cambrian granites. All mining activities are artisanal and active. • Au 3: Located in Niger State, is devoid of any documented hard-rock mineral occurrences and contains two placer deposits, all hosted in Neoproterozoic volcano-sedimentary units. • Au 4: Located in Niger State, contains at least 27 active hard-rock occurrences of Au of hydrothermal genesis within Neoproterozoic volcano-sedimentary units and Cambrian granites. Presently, all mining activities are artisanal and active, and under a mining lease.

• Au 5: Located in Zamfara State, contains at least 21 active hard rock occurrences of Au hosted in Neoproterozoic volcanosedimentary units. All mining activities are artisanal and active, and partially covered by a mining lease. • Au 6: Located in Zamfara State, contains at least 15 active hard-rock occurrences of Au of hydrothermal genesis hosted in Neoproterozoic volcano-sedimentary units. All mining activities are artisanal and active following an N-S mineralization trend,

covered by a mining lease. • Au 7: Located between Kaduna and Niger States, contains at least two active hard rock occurrences of Au seemingly a stockwork deposit hosted in Neoproterozoic volcano-sedimentary units. All mining activities are artisanal and active following an N-S mineralization trend, covered by a mining lease. • Au 8: Located in Kogi State, contains at least 99 active hard rock occurrences of Au suggesting a stockwork system hosted in Archean-Paleoproterozoic gneisses. All mining activities are artisanal and active following an NE-SW mineralization trend, covered by several mining licenses. • Au 9: Located in Kebbi State, contains at least 67 mineral occurrences of Au suggesting a stockwork deposit hosted in Cambrian granites. All mining activities are artisanal and active following an NE-SW mineralization trend, partially covered by

Criteria	Points per		•	Au Targ	ets and t	heir scori	ing per ci	riterium	•	
Criteria	Criterium	Au 1	Au 2	Au 3	Au 4	Au 5	Au 6	Au 7	Au 8	Au 9
		MPM SI	hape and	intensity	,	-		-		
Compact pattern above 0.9	5	5							5	5
Compact pattern and above 0.8	4		4		4					
Compact pattern and above 0.7	3			3						
Diffuse pattern and above 0.9	2					2	2			
Diffuse pattern and above 0.8	1							1		
		With	nin schist	belt?	_	_		-		_
Yes	5	5	5	5	5	5	5	5		
No	1								1	1
Within ultramafic complex?										
Yes	5	5					5			
No	1		1	1	1	1		1	1	1
		Gold oc	currence	s known?			•		•	
Yes	5	5	5		5	5	5	5	5	5
No	1			1						
		Gold curr	ently bei	ng mined	?					
Yes	5	5	5			5	5	5	5	5
No	1			1	1					
	Existence of	of placer d	eposits p	inpointin	g to soui	rce?				
Yes	5	5	ſ			5			5	
Partially	3		3	3						
No	1				1		1	1		1
		Contains	cluster of	f deposits	?		•		•	
Yes	5	5	5		5		5		5	5
No	1			1		1		1		
		Number o	of veins ir	the targe	et		•		•	
>15	5	5	5						5	5
15-10	4					4				
10-6	3				3		3			
6-3	2									
<3	1			1				1		
	Lei	ngth of ma	ajor ident	ified vein	(m)					
>1000	5		5			5		5		
500-1000	4						4		4	4
250-500	3	3								
60-250	2									
<60	1			1	1					
		NIME	P Data Av	ailable?						
Yes	5	5	5							
No	1			1	1	1	1	1	1	1
			Total Sco	re						
Score		48	43	18	27	34	36	26	37	33
			Rank							
Rank Order		1	2	5	5	4	3	5	3	3

Lithum (Li)-Tantalum (Ta) Pegmatite Targets

leases.

• Li-Ta 1: Located around Keffi in Nasarawa State containing 17 pegmatitic veins hosted in gneisses and with a proven thickness of 20m. Mineralization trend of the bodies is NE-SW. Primary mining operations in the region are artisanal. • Li-Ta 2: Located around Keffi in Nasarawa State containing 12 pegmatitic veins in gneisses. Mining in the region is artisanal and concentrates in 2 main areas with bodies of at least 20m thickness. Mineralization trend of the bodies is NE-SW. • Li-Ta 3: Located close to Atabo town, Oyo State, containing 9 pegmatitic veins hosted mainly in gneisses. Mining in the region, on bodies with NNE-SSW trend, is artisanal and sites are mainly abandoned except one main pit. • Li-Ta 4: Located around south-east of Ibadan, Oyo State, containing no known lithium or tantalum pegmatitic veins, but several aquamarine sites hosted in gneisses. Mining in the region is artisanal aided with excavator machinery on bodies with N-S trend. • Li-Ta 5: Located around Saki East in Oyo State, containing two known mineralized pegmatitic veins hosted in gneisses. Mining in the region is solely artisanal on bodies with NE-SW trend.

• Li-Ta 6: Located around Beni Hill, Niger State, contains no known mineralized pegmatitic veins but has recent artisanal activities in an interpreted 2km body hosted in gneisses. Pegmatites seem to have a NNW-SSE trend. • Li-Ta 7: Located around Irina town, Niger State, contains no known mineralized pegmatitic veins but has recent artisanal activities for gold related to pegmatites, having a N-S trend. • Li-Ta 8: Located around Ijero area, Ekiti State, containing 13 known mineralized pegmatitic veins with proven thicknesses of 50m and hosted in gneisses and granites. Mining in the region is artisanal on bodies with NNE-SSW trend. • Li-Ta 9: The target area situated around Danba Lema, Kwara State, containing 11 known mineralized pegmatitic veins with proven thicknesses of 40m and hosted in gneisses and granites. Mining is solely artisanal on bodies with NNE-SSW trend. • Li-Ta 10: Located around Ila-Orangun, Kwara State, containing 3 known mineralized pegmatitic veins hosted in gneisses, of which two are recent and active and operated by artisanal miners, one is abandoned, and with an apparent NE-SW trend. • Li-Ta 11: Located around Sepeteri Area, Oyo State, containing 12 known mineralized pegmatitic veins hosted in gneisses currently active and being exploited by artisanal miners with a NW-SE trend. Currently, there area is covered by several mining

		Crit	eria for L	i-Ta Pegn	natite Tar	gets						
Criterum	Points	Li-Ta 1	Li-Ta 2	Li-Ta 3	Li-Ta 4	Li-Ta 5	Li-Ta 6	Li-Ta 7	Li-Ta 8	Li-Ta 9	Li-Ta 10	Li-Ta 11
			MPM Sł	hape and	intensity					•		
Compact pattern above 0.9	5	5									5	
Compact pattern and above 0.8	4								4			
Compact pattern and above 0.7	3					3	3			3		
Diffuse pattern and above 0.9	2		2	2	2			2				
Diffuse pattern and above 0.8	1											1
Close to young shear zone?												
Yes	5		5	5	5	5			5	5	5	5
No	1	1		-	-	-	1	1			-	
Li stream sediment anomalies												
>100	5											
100-80	4											
80-60	3				3							
60-40	2	2			5	2		2				
<40	1	_	1	1			1		1	1	1	1
	-	Ta	- stream	- sediment	t anomali	es			-			
>15	5		Justicality	scamen		C3			1	1		
15-10	<u>5</u>	Δ	Λ					Δ				
10-6	2	4	4		2	2		4				
6-3	2			2	5	5	2					
<3	1			2			2		1	1	1	1
	±	<u> </u>	s stroam	sodimon	t anomali	05					-	-
>15	F		sstream	seuimen		85						
215	5		4					1				
13-10	4		4	2	2	2		4				
6.2	<u> </u>	2		5	5	5	2					
0-3	2	2					2		1	1	1	1
< 5	1	De	amatitaa						1	<u> </u>		1
Vac	F				ICES KHOV				-		-	-
Yes	5	5	5	5	4	5	1	1	5	5	5	5
NO	1			- 6			1	1				
	_		Number (of pegma I	itite point	S			1	1		
>15	5	5										
15-13	4								4	4		4
13-10	3		3	~								├───┨
10-5	2			2								
<5	1		Demo		1	1	1		L		1	L
	_	-	Pegmat	ites being	g mined?	-		1	-	-	-	-
Yes	5	5	5	5					5	5	5	5
No	1				1	1	1	1				
	-	Prov	en thickı	ness of p	egmatites	s (m)			-	1		
>50	5								5			├───┨
50-30	4									4		├───┨
30-20	3	3	2	~		2						└───┨
20-10	2		2	2		2						
<10	1				1		1	1	I		1	1
				Iotal Sco	re						-	
Total Points		32	31	27	20	25	13	17	31	29	25	24
				Iotal Sco	re							
Rank order		1	1	2	3	3	5	4	1	2	2	3

Uranium Mineral Occurrences after mineralization type:

1. Sandstone hosted
diagenetic-epigenetic accumulations of uranium in sandstones from nearby leached uranium-rich basement complex granites. Uranium minerals, mainly pitchblende and coffinite, are disseminated or present as veinlets and found up to a depth of 200 meters, totaling 0.18 wt. % to 0.25 wt. % of U concentration

2. Phosphate related **>** sedimentary marine origin mineral occurrences with apatite as the main host of uranium minerals within the Sokoto basin and Dahomey basin. Average uranium concentrations along the phosphate nodules and pellets range from 29-65 ppm.

3. Hydrothermal (vein) lendogranitic and perigranitic hydrothermal-related accumulations of uranium in fractures, stockworks and shear zones concentrated in the Adamawa Massif, which hosts the Mika prospect. Estimated uranium resources at the Mika Prospect total 52 tons at 0.63wt. % U with a vertical extent of 130 meters, while at Ghumchi, 100 tons at 0.90wt. % U with a vertical extent of 200 meters.

4. Accessory minerals ► uranium occurring as accessory phases, mainly as pyrochlore, within granitic intrusions (e.g., Older and Younger Granites) formed through anatectic and anorogenic processes. Uranium minerals contain concentrations from 190 ppm of up to 3.5 wt. % UO2 and average ThO2 values of 4.3 wt. % ThO2.

1:2,500,000 Birnin Kebbi Benin Basement Li-Ta 5 Domain Abeokuta Li-Ta 4 Dahomey Basin liebu Ode Gulf o<u>f</u> Guinea 4°O

Legend

Mineral Occurences (without Placers)

Gold (Au)

- Base Metals (Pb, Zn, ba)
- Rare Metals (Ta, Li, Sn, Nb)

Gold (Au) Targets

Nuclear Fuel (U)

Rank	Score
1	>= 45
2	>= 40-44
3	>= 35-39
4	>= 34-30
5	< 30

Location and Ranking of Exploration **Targets in Nigeria** 1:2,500,000

Tin (Sn) Targets

Rank		Score					
	1	>= 31					
	2	>= 25-3					
[]]	3	>= 20-2					
	4	>= 15-1					
	5	< 15					

Lithum (Li)-Tantalum (Ta)-Pegmatites Targets

Rank		Score
	1	>= 30
	2	>= 25 -29

3	>= 20-24
4	>= 15-19

5 < 15

Lead (Pb)-Zinc (Zn) Targets

	()	
Rank		Score
	1	>= 35
	2	>= 30-34
[]]	3	>= 25-29
	4	>= 20-24
	5	< 20

Uranium (U) Targets

Genetic types

1	Sandstone	host

- Phosphate related
- Granite related/hydrothermal
- Accessory minerals

Geological & Tectonic Units

10°O

Chad Basin
Niger Delta Basin
Gongola Sub-Basin
lullemmeden (Sokoto) Basin
Dahomey Basin
Anambra Basin
Bida Basin
Benue Trough
Western Basement Domain
Transitional Tectonic Domain
Central Basement Domain
Eastern Basement Domain

12°O

Topography

Nigeria Border

River

Lake

Settlements

Railway

Road

DISCLAIMER The information presented on this map has been collected from a variety of data sources. Although all data has been procured and researched with special diligence, it may be inherently inaccurate and imprecise. The user recognises that abstractions and adjustments are necessary for the map presentation of geoscientific data. The publisher / author is not liable for any direct or indirect damages, losses, costs, charges or demands of any nature or kind resulting from incorrect / imprecise / incomplete data or incompetent use of data presented on this map. The user only is responsible for the appropriate use of all data presented on this map. The map is intended for use at the published scale only. Results of further detailed investigations may differ from data presented on this map. This map is not an authority on international boundaries.

Mineral Occurrences database retrieved on 03 April 2024

International Borders

Tin (Sn) and Niobium (Nb) Targets

• Sn-Nb 1: Located in Plateau State, boasts six Pneumatolytic veins of Sn-Nb within supergene-enriched sediments, aligned with east-west structures in late Jurassic intrusives/volcanics. All mining activities in the region are artisanal, with no active licenses reported as of 2023. • Sn-Nb 2: Located in Plateau State, contains 11 Pneumatolytic veins of Sn-Nb within supergene-enriched sediments, aligned

along east-west structures in late Jurassic intrusives/volcanics. All mining operations are artisanal, with no active licenses reported as of 2023. • Sn-Nb 3: Located in Plateau State, lacks any known hard-rock occurrences but some placer deposits of Sn-Nb, all hosted in late Jurassic intrusives/volcanics. Mining activities in the region are artisanal, albeit all active licenses are exploratory in nature.

• Sn-Nb 4: Located in Plateau State, hosts just one known Pneumatolytic vein occurrence, aligning with a north-south trend within late Jurassic intrusives/volcanics. All mining operations in the vicinity are artisanal and covered by a license. • Sn-Nb 5: Located in Bauchi State, boasts four known hard-rock occurrences along with several placer deposits of Sn-Nb. Pneumatolytic veins within late Jurassic intrusives/volcanics follow an NNW-SSE trend. All mining activities in the region are artisanal without a valid license.

• Sn-Nb 6: Located in Nasarawa State, contains one known hard-rock occurrence and one massive placer deposit. Structures follow an NE-SW trend within late Jurassic intrusives/volcanics. All mining activities are artisanal. • Sn-Nb 7: Located in Kano State, contains four Pneumatolytic veins of Sn-Nb along with nine diagenetic placer deposits hosted mainly in late Jurassic intrusives/volcanics. Primary mining operations are industrial, with some additional artisanal sites.

• Sn-Nb 8: Located in Bauchi State, contains six Pneumatolytic veins and eight diagenetic placer deposits all within late Jurassic intrusives/volcanics. Primary mining operations in the region are artisanal without any valid license.

	Points ner	oints nor Sn Targets and their scoring nor criterium							
Criteria	Criterium	Sn-Nh 1	Sn-Nh 2	Sh largets	$Sn_Nh/4$	Sn-Nh 5	Sn-Nh 6	Sn-Nh 7	Sn-Nh 8
	entenum		hano and i	atonsity	311-110 4	31-110 3	311-110-0	31-1107	311-110-8
Compact pattern above 0.0	F			r r	<u> </u>	-			
Compact pattern above 0.9	5	4	5	5		5	4		
Compact pattern and above 0.8	4	4			2		4		2
Compact pattern and above 0.7	3				3			2	3
Diffuse pattern and above 0.9	Z							2	
Diffuse pattern and above 0.8	1		<u> </u>						
			currences k	nown?			1	-	-
Yes	5	5				5		5	5
No	1		1	1	1		1		
		Tin depo	osits being	mined?	-		1	1	
Yes	5	5	5			5	5	5	5
No	1			1	1				
	N	iobium wit	hin the mi	neral suite	?				-
Yes	5	5	5				5	5	5
No	1			1	1	1			
		Undocume	nted depo	sits found?	1				
Yes	5	5		5	5	5	5		5
No	1		1					1	
		Potenti	al for old p	lacers?					
Yes	5		5			5			
No	1	1		1	1		1	1	1
	Existence	of placer d	eposits pir	pointing t	o source?			•	
Yes	5		5					5	
Partially	3			3		3			3
No	1	1			1		1		
	٦	Number of	hard rock	occurrence	S			•	
>15	5								
15-10	4		4						
10-6	3	3							3
6-3	2					2		2	
<3	1			1	1		1	_	
			Total Score	-					
Score	40	29	31	18	14	31	23	26	30
			Rank						
Rank order	7	2	1	4	5	1	3	2	2

Lead (Pb) and Zinc (Zn) Targets

• Pb-Zn 1: Located in Lower Benue Trough, conatins15 occurrences of Pb-Zn, two of which are undergoing advanced activities and production. Extensive N-S trending veins are prevalent, hosted within interbedded argillaceous and sandstone beds. • Pb-Zn 2: Located in Lower Benue Trough, comprises 13 occurrences of Pb-Zn exploited by artisanal operations. The general vein trend follows an NW-SE orientation hosted within early Cretaceous interbedded argillaceous and sandstone beds. • Pb-Zn 3: Located in Middle Benue Trough, encompasses 10 occurrences of Pb-Zn, one site with active underground mining operations. Extensive N-S trending veins are prevalent and hosted within late Cretaceous sandstones and limestones. • Pb-Zn 4: Located in Middle Benue Trough, comprises 10 occurrences of Pb-Zn, one site with underground mining operations. Extensive N-S trending veins are prevalent and hosted within late Cretaceous syn-rift sandstones and limestones. • Pb-Zn 5: Located in Middle Benue Trough, contains 30 occurrences of Pb-Zn exploited by artisanal miners. The predominant trend of the mineralized bodies extends E-W hosted within late Cretaceous carbonaceous shales, mudstones, shaly limestones, and coal seams.

• Pb-Zn 6: Located in Upper Benue Trough, contains five occurrences of Pb-Zn featuring recent small-scale mining operations. The mineralized veins exhibit a predominant N-S trend hosted within late Cretaceous syn-rift sediments. • Pb-Zn 7: Located in Upper Benue Trough, contains 47 occurrences of Pb-Zn, with one site currently undergoing recent industrial-scale mining operations. The mineralized veins exhibit a predominant NNW-SSE trend hosted within early and late Cretaceous sandstones and siltstones. • Pb-Zn 8: Located in Lower Benue Trough features no reported occurrences of Pb-Zn. Mining operations within the area are entirely artisanal with no license claim. The mineralized veins predominantly trend NE-SW hosted within late Cretaceous syn-

rift sandstones and siltstones. • Pb-Zn 9: The target within the Upper Benue Trough boasts 47 occurrences of Pb-Zn, with one site currently undergoing recent industrial-scale mining operations. The mineralized veins predominantly trend NNW-SSE hosted within early and late Cretaceous syn-rift sandstones and siltstones.

	Points per	Points per Pb-7n Targets and their scoring per criterium								
Criteria	Criterium	Pb Zn 1	Pb Zn 2	Pb Zn 3	Pb Zn 4	Pb Zn 5	Pb Zn 6	Pb Zn 7	Pb Zn 8	Pb Zn 9
	M	PM favou	urability r	nap patte	ern	•				1
Compact pattern above 0.9	5	5		5	5				5	[]
Compact pattern and above 0.8	4						4	4		[
Compact pattern and above 0.7	3		3							
Diffuse pattern and above 0.9	2					2				2
Diffuse pattern and above 0.8	1									
Within	visible anticlinal st	ructure?	(see Tilt o	of the RT	P and lith	ostructu	ral map)			
Yes	5	5	5	5	5	5	5		5	
No	1							1		1
Proximity to	volcanic rocks (indi	cated by	the 1st V	ertical De	erivative o	of RTP ma	agnetic si	gnal)		
Yes	5		5	5		5				5
No	1	1			1		1	1	1	
		Pb-Zn oc	currence	s known	?	_		-	-	
Yes	5	5	5	5	5	5	5	5		5
No	1								1	
	-	Numb	er of vei	ns/pits						
>15	5					5		5		
15-10	4	4								
10-6	3		3							3
6-3	2			2	2		2			
<3	1								1	
		Pb-Zn	active op	en pit?	•	•	•	•	•	
Yes, big pit	5	5		5		5	5	5		
Yes, small pit	3		3							3
No mining	1				1				1	
	Le	ength of	the existi	ng pits (r	n)	•	1	1	-	
>2000	5	5				5				
2000-1400	4			4				4		
1400-1000	3						3			
1000-500	2		2							2
<500	1				1				1	
	N	IMEP exp	loration	in the are	ea?		1	1	-	
Yes	5		5	5	5		5			5
No	1	1				1		1	1	
		٦	Total Sco	е						
Score		31	31	36	25	33	30	26	16	26
			Rank							
Rank order		2	2	1	3	2	2	3	5	3

Location and Ranking of **Exploration Targets** in Nigeria

1:2,500,000

Map Compilation Dr. A. Barth (Beak), L. A. Pizano Wagner (Beak),

Cartography & Layout

Information Management & GIS C. Repper (Beak)

Mineral Sector Support for Economic Diversification Project (MinDiver)

Data Capture L. A. Pizano Wagner (Beak), Z. Garifullin (Beak),

A. Bautista Gascuena (Beak), A. Brosig (Beak), A. Barth (Beak), V. Tyurin (Beak), P. Cocher (Beak), N. Rizatdinova (Beak)

Map projection Transverse mercator (UTM Zone 32N)

Project Coordinator Dr. Salim Salaam

April 2024

A. Brosig (Beak)

14°O

ographic Map: OpenSt

Important data sources: Geological map of Nigeria - NGSA (2006) Litho-structural Map of Nigeria - NGSA (2023) Mineral Occurrence database of Nigeria - NGSA (2022) Low-res Geophysical Datasets (Magnetics, Radiometry) - NGSA (2013) High-res Geophysical Datasets (Magnetics, Radiometry) - NGSA (2024) Concentration dataseta. NGC 80 2020

al datasets – NGSA 2022

Important data sources:

C. Repper (Beak), A. Barth (Beak) L. A. Pizano Wagner (Beak), P. Cocher (Beak),

Project Name

